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The velocity field of the Burgers one-dimensional model of turbulence a t  ex- 
tremely large Reynolds numbers is expressed as a train of random triangular 
shockwaves. For describing this field statistically the distributions of the intensity 
and the interval of the shock fronts are defined. The equations governing the 
distributions are derived taking into account the laws of motion of the shock 
fronts, and the self-preserving solutions are obtained. The number of shock fronts 
is found to decrease with time t as t-a, where a (0 < a < 1) is the rate of collision, 
and consequently the mean interval increases as ta. The distribution of the in- 
tensity is shown to be the exponential distribution. The distribution of the 
interval varies with a, but it is proved that the maximum entropy is attained by 
the exponential distribution which corresponds to a = 8. For a = 9, the turbulent 
energy is shown to decay with time as t-l, in good agreement with the numerical 
result of Crow & Canavan (1970). 

1. Introduction 
Turbulence is in its broadest sense a random motion of a continuous medium. 

The turbulent velocity field u(x, t )  is a random function of the co-ordinate x and 
the time t ,  but at  the same time it must satisfy a deterministic equation of motion 
and, possibly, subsidiary equations. When the governing equations are nonlinear 
as is the case in the hydrodynamical turbulence, they impose a relationship 
between different degrees of freedom which compose the turbulent field. If we 
expand the velocity field in a three-dimensional Fourier series, 

u(x, t )  = v(k, t )  exp [ik. XI, 
k 

assuming the spatial periodicity of the field, the relevant degrees of freedom are 
the Fourier components v(k, t ) ,  and then the relationship arises between v(k, t )  
and v ( k ,  t )  for k 9 & k’. 

In hydrodynamical turbulence the nonlinear term is proportional to the 
Reynolds number. Almost all analytical theories of turbulence proposed so far 
express the results in ascending powers of the Reynolds number, and in this 
sense they are all regular perturbation methods around the state of vanishing 
Reynolds number, where every Fourier component behaves independently of 
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the others. So long as the Reynolds number is small the relation between different 
Fourier components is so weak that the interaction may adequately be dealt 
with by means of a regular perturbation. On the other hand, at  large Reynolds 
numbers, with which most cases of practical importance are concerned, the 
nonlinear terms are dominant and strong interaction between different Fourier 
components prevails. In this situation any regular perturbation methods must 
become either invalid or very inefficient. The occurrence of the negative energy 
spectrum (Ogura 1962, 1963) as a consequence of the approximation of zero 
fourth-order cumulant (Proudman & Reid 1954; Tatsumi 1955,1957) is a typical 
example. Even if a more elaborate perturbation technique could bring about 
physically tolerable results there is no guarantee for them to be correct at  large 
Reynolds numbers since the terms neglected cannot be expected to have a small 
effect. It is well known in the case of laminar flows that the Navier-Stokes equa- 
tion forms a singular perturbation problem in the limit of infinite Reynolds 
number and presumably the same would be the case also for turbulence. 

A more effective way of dealing with this system of strong interaction or 
turbulence at  large Reynolds numbers may be to look for a new set of degrees of 
freedom for which the mutual interaction is minimized at  1argeReynoldsnumbers. 
There exists no general rule for finding such a set of degrees of freedom, but the 
experience of the singular perturbation in laminar flows suggests taking up as 
the new degrees of freedom the asymptotic solutions of the governing equation 
at  extremely large Reynolds numbers. In turbulence in an incompressible fluid, 
for instance, they would be furnished by the vortex tubes and sheets, and in the 
Burgers model of turbulence they may be triangular shock waves. Unlike the 
Fourier components, these nonlinear solutions have discontinuous structure 
which is characteristic of the velocity field a t  large Reynolds numbers, and in 
this sense they already embody a substantial part of the nonlinear interaction 
of Fourier components. Of course there still exists a residual part of the non- 
linear interaction, that is the interaction between these nonlinear solutions. In  
dealing with this type of interaction, however, we are greatly helped by the 
fact that the interaction takes the form of ‘collision’ of discrete ‘particles’ and 
its effect can be evaluated by means of kinetic-theory methods. 

In  the present paper we shall deal with the Burgers model of turbulence. The 
reason for taking up this model first is that the mechanics of the asymptotic 
solutions, or the triangular shock waves, has already been investigated in great 
detail by Burgers (1950) and it has been shown that there exist simple laws of 
motion for these shock waves. A preliminary approach along these lines was 
undertaken by one of the authors (Tatsumi 1969), who expanded the velocity 
field in a series of periodic functions of saw-tooth profile. This work, however, 
suffered seriously from the incompleteness of the above function series, and the 
desired purpose does not seem to have been achieved by this expansion. In  the 
present work no series expansion is proposed, but instead the turbulent velocity 
field is expressed as a random sequence of triangular shock waves. The distribution 
functions of the intensity and the interval of shock fronts are defined, and the 
equations for the distribution functions are constructed taking into account the 
laws of motion of shock waves. By assuming the self-preservation of solutions 
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in time we can solve the equations and obtain the distribution functions and the 
change in the number of shock fronts with time. The law of decay of turbulent 
energy is derived from this information.? 

It may be obvious that this scheme of dealing with Burgers turbulence cannot 
be extended straightforwardly to the real turbulence in an incompressible fluid. 
In  incompressible turbulence the asymptotic solutions for infinite Reynolds 
number are not shock waves but discrete vortex tubes and sheets surrounded by 
an irrotational velocity field, and the laws of motion of these vortices are 
necessarily different from those for Burgers’ shock waves. Nevertheless, the 
basic idea of expressing the turbulent field in terms of a set of weakly interacting 
degrees of freedom at large Reynolds numbers is equalIy applicable to the in- 
compressible turbulence. In this sense the present work on Burgers turbulence 
may also be taken as a primary step towards the study of the incompressible 
turbulence. 

Lastly it should be noted that Burgers turbulence gives a realistic model of 
the weakly supersonic turbulence in a compressible fluid. The Burgers equation, 
being an approximate equation of motion for slightly supersonic flows, describes 
the formation and decay of weak shock waves. Thus Burgers turbulence expresses 
the real supersonic turbulence composed of a random array of shock waves. In 
view of the existence of many important phenomena in both nature and in the 
laboratory closely related to supersonic turbulence, it may be needless to say 
that Burgers turbulence is of considerable interest in its own right. 

2. Train of shock waves 
The Burgers equation of motion is written in non-dimensional form as 

au au 1 a2u 
at+-=--  ax R ax2’ 
- 

where u = u(x,t) denotes the velocity, x the space co-ordinate and t the time, 
and R = u, Zo/v is the Reynolds number defmed with reference to a representative 
velocity uo, the length 1, of the turbulent field, and the kinetic viscosity v. 

Equation (2.1) has the peculiar feature that negative slopes (au/ax < 0) of 
the solution are steepened in time until they build up into discontinuous steps 
while positive slopes (&/ax > 0) are all diminished to zero, so that a t  large 
Reynolds numbers all solutions eventually take the form of a train of triangular 
shock waves. Since we are dealing with Burgers turbulence at large Reynolds 

t After this paper was submitted for publication the authors were informed by Prof. 
J. M. Burgers that he also had done work dealing with the same problem (Burgers 1972). 
In  his paper Burgers attempts to derive all the information about the positions and the 
amplitudes of the shock waves from statistical treatment of the initial velocity fields, 
which are assumed to be random with respect to the space co-ordinate. In  the present work, 
on the other hand, this information is looked for as the solutions of a truncated hierarchy 
of equations for the distribution functions. Thus, in spite of the similarity in the basic 
formulation of the problem the ways of approach in Burgers’ and the present work are 
quite different, and it may be interesting to  compare the consequences of these theories 
when they come out in full. 
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numbers we shall examine in more detail the asymptotic structure of the velocity 
field at  large Reynolds numbers. 

It was shown by Hopf (1950) and Cole (1951) that the transformation 

or 

2 a  
u(2, t )  = - - -log q x ,  t ) ,  (2.2) R ax 

converts (2.1) into an equation of heat conduction: 

ae 1 a2e 

at R ax2- 
_ -  

The general solution of (2.4) is expressed as 

(2.4) 

where O(x, 0) denotes the initial state. The solution (2.5) may also be written as 

4t (2.6) 
O(x, t )  = (=) R 4  /:;xp [ - &RU(x’) 

where U ( x ,  t)  = u(x‘, 0) ax’. Ix 
Now let us examine the integrand of (2.6). U ( x )  takes minimum values at  those 

zeros of u(x,O) at which du(x,O)/dx > 0, and we denote these zeros by x = xi 
say, j being an integer and xi < xi+l. It may be a sensible restriction for the 
initial state that both the intervals of zeros xj+l - xj and the gradients du(x, o)/dx 
at the xi are all finite. Then for sufficiently large values of R, the function 
exp [ - &RU(x’)] vanishes almost everywhere except for the neighbourhood of 
the xj, where it has separate peaks of the width of O[l/(RU”(xi))!z], V ( x )  being 
d2U(x)/dx2. On the other hand, the function exp [ - R(x - ~ ’ ) ~ / 4 t ]  has a peak of 
the width of O((t/R)i) around the point 2. Thus, under the condition that R $ 1 
we can express the integral of (2.6) as 

where E is a small but finite positive number. Further, provided that t 
above integrals can be asymptotically evaluated as 

1 the 

Here we introduce the functions 

1 1 
A(x,  Xi) = R - log UN(Xj )  + U(xJ + - 2t (x - Xi)? (2.9) 
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FIGURE 1. The functions A(%, zf). 

As a function of x each A(x, xj) has a minimum at xi. For a given x, on the other 
hand, there exists some A(x, xj), A(x,  xl) say, which gives a lowest value. Then if 
we let x vary from -co to co we obtain a sequence of such A(x, q), where {xz} 
forms a subset of {xj}. Let us redefine I as l,, where i runs over all integers, and 
put xzi = qi. As stated above, some A (x, qi) takes the lowest value among all the 
A(x,%) over a certain range of x, and we denote this range by < x < &. 
At the point ti obviously A(&qi) = ~ 4 ( & , q ~ . + ~ ) ,  or from (2.9), 

Thus for extremely large R the right-hand side of (2.8) is dominated by the 
term withj = 1 and we can neglect all other terms withj + 1. More precisely, for 
the range < 5 < we have to retain only the two terms 
corresponding to yd and qi,.l: 

Substituting (2.11) into (2.2) and making use of (2.10), we obtain the following 
asymptotic expression of u(x, t )  which is valid in the region 

andfor R 9 1, t 9 1: 
+i(Ei-l + ti) < x < +(ti + 

1 1 R 
u(x, t )  = -[x- t i (qi  + qi+l)l -z(qi+l-qi) tanh [z (q i+l -Ti )  (.-ti)] * (2.12) 
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Further, in the limit of R/t -+ co, the expression (2.12) reduces to 
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u(x,t) = (2.13) 

The expressions (2.12) and (2.13) show that a t  very large Reynolds numbers 
and times such that 1 < t < R the velocity field is represented by it sequence of 
vertical shock fronts, each connected with a linear slope of different length 
but of common gradient /J' = l / t .  This velocity field, or the train of shock waves, 
is the subject of study in this paper. 

3. Mechanics of shock fronts 
In this section we shall consider the mechanics of the system of triangular 

shock waves which has been derived in $2. Let us assume for convenience that 
the velocity field is spatially periodic, 

u(x,t) = U ( X + L , t ) ,  (3.1) 

and restrict ourselves to  the basic domain 0 < x < L, in which N shock waves are 
included. As is easily seen from (2.13) the co-ordinates of the shock fronts are 
given by ti (i = 1,2, . . . , N )  and those of the intersections of the slopes with the 
x axis by T~ (i = 1,2, .. ., N ) .  Then the state of the system a t  a given time is com- 
pletely determined by specifying the set of ti and qi. Define the following 
variables : 

(3.2) hi = ti+1 - t i 7  

Pi = 7li+l- T i 7  (3.3) 

where Ai represents the interval of two consecutive shock fronts located at ti 
and and Bpi the intensity of the shock front a t  ti measured by the height 
of the step. 

FIGURE 2. Turbulent velocity field as a train of shock waves. 

The laws of motion which govern the system of shock waves at  infinite Reynolds 
number were investigated in great detail by Burgers (1950) and they can be 
summarized as follows. 

(i) The gradient /3 of the slopes decreases with time as ,8 = lit. 
(ii) The intersections ri and their intervals pi are invariant in time, 

except at the instants of collision. 
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(iii) The shock fronts move with constant velocity according to the equation 

d‘wt = ( l / t )  [& - h i  + %+,)I, 

dhildt = ( IN [hi - 4fPi+Pi+1)1. 

(3.5) 

(3.6) 

and hence the interval of the shock fronts changes in time as 

(iv) When two shock fronts of intensity /?pi and Ppi+, come into collision they 
coalesce to form a single front of intensity P(pi+pi+,). 

(v) As a consequence of the above collision the intersection qi+l disappears 
from the system and hence the number N of shock waves decreases by one. 

The above laws of motion may more clearly be stated in terms of the ‘particle’ 
representation of the system. We can regard each shock front as a particle 
located at  ti, having mass pi, velocity ci = d&/dt and momentumpici. Laws (i), 
(ii) and (iii) state that the mass pi and the velocity ci are invariant in time except 
at  the instants of collision, while laws (iii), (iv) and (v) guarantee the conservation 
of the mass pi and the momentum pici at every collision. All the collisions are 
entirely inelastic owing to law (iv). In  the following we shall use the above 
terminology, which describes the shock waves as if they were cohesive particles. 

4. Equations of distribution functions 
Now let us consider an ensemble of the states possible for the system of N 

particles and define various probability distributions. Denote the probability 
distribution density of the mass p by f(,u, t ) ,  and that of the interval h by g(h, t ) .  
Moreover, define the joint probability distribution density of n successive in- 
tervals, A(,), A(”, . . . , A(”), sandwiched alternately by n + I successive masses, 
,do), ,dl), . . . , ,&), by g,(h(’), . . . , A(”); ,do), . . ., ,dn); t). Then it follows from the defini- 
tion that 

(4.1) 

We shall derive the equations which govern these distribution functions from 
the mechanics of the particle system. First, consider the change in time of the 
number N(t)f(p, t)  6,u of masses which are included in the range (p, p + 6p). The 
number of pairs of masses p’ and p“ which are about to collide with each other 
at  time t is N(t)gl(O;~’,~’’;t)6~’6~” and the relative speed with which they 
approach is (p’ +pf’)/2t, so that the number of such collisions per unit time is 
givenbyN(t)g,(O;p‘,p”; t )  6,u’6,u”(,uf +p”)/2t. Since thenet changeof thenumber 
of the mass ,u is equal to the difference between the production and the destruction 
of the mass ,u due to collision, we have the following equation: 

at 



666 T .  Tutsumi and S.  Kidu 

where dldt denotes total differentiation. The first term of the right-hand side of 
(4.4) represents the production of mass p and the second term the destruction 
due to collision. 

Since dpldt = 0 according to (3.4), integration of (4.4) with respect to p leads 
to the following equation for N ( t )  : 

On substitution of (4.5) into (4.4) we obtain the following equation f o r f (p , t ) :  

In  a similar manner we can derive the equation for g,(h(I), . . . , A("); ,do), . . . , p(n); t )  
as follows: 

d"(t) g,(A(l), . . . , A("); p@), . . . , p'"); t )  W). . .8h(")]/dt 

m 

- 1 s (p +p'O') g,+,(O, W), . . ., h(");p, 

41: (p(")+p) gn+l(A(l), . . ., A("), O ; p @ ) ,  . . .,p(n),p; t )  dp] . 

. . .,p? t )  dp 
2t 0 

(4.7) 

If we take the lowest order equation of (4.7) and integrate it with respect to  
p(0) and p(l) we obtain 

or, taking into account (4.3), 
d[N( t )  g(h, t )  Gh]/dt = 0. (4.9) 

Equation (4.9) shows that the number N ( t )  g(h, t )  13h of intervals included in the 
range (A,  h + ah) does not change on collision and is conserved in time. Since 
dshldt = 8h/t according to (3.6), equation (4.8) may be written as 

where use has been made of (4.5). 
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If we proceed to higher order equations of (4.7), we shall obtain a hierarchy of 
equations for g, (n 2 2), which, however, always contains one more unknown 
than equation. This unclosedness of the hierarchy is due to the effect of particle 
collisions and hence is nothing but a reflexion of the nonlinearity of the turbulent 
field. 

In  dealing with the infinite sequence of equations (4.7) we shall retain only the 
first equation, or, more precisely, its integrated form (4.10). This is a truncation 
of the infinite set of equations (4.7) and may remind us of the similar truncation 
processes in the conventional perturbation expansion around the non-interacting 
state. There are, however, essential differences between the present and con- 
ventional truncation processes. First of all, as was mentioned in $1, the present 
truncation is concerned only with the residual part of the nonlinear interaction, 
whereas the conventional truncation is applied to the whole nonlinear interaction. 
The second difference lies in the nature of the present truncation, where the 
equation for g l (h ;p ,p ' ; t )  is replaced by an integrated equation (4.10). As will 
be shown below, (4.10) allows a group of self-preserving solutions. Since the 
exact solution must be included in all possible solutions of (4.10) it is quite 
probable that the exact solution is either akin to or identical with one of these 
self-preserving solutions. Lastly, it should be emphasized that even a truncated 
form of (4.7) gives some probability distributions as solutions, and therefore 
there is no danger of its leading to unphysical consequences, which sometimes 
occur in the conventional perturbation processes. 

5. Self-preserving solutions 
Now we proceed to solving the set of equations (4.5), (4.6), (4.3) and (4.10) 

for N ( t ) , f ( p ,  t ) ,  g(h, t )  and gl (h;p ,p ' ;  t )  respectively. We look for solutions within 
the self-preserving distributions which change in time only through the change 
of a characteristic length, Z(t) say. The self-preserving forms of f(p, t ) ,  g(h, t )  
and g,(h; p, p'; t )  may be expressed as follows: 

It immediately follows from (5.1) and (5.2) that 

( A )  = j r n h g ( A , t ) d h  0 = I@), J 

(5.1) 

(5.4) 

where ( ) denotes the probability mean. Thus Z(t) is equivalent to the mean mass 
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(p )  and also the mean interval (A ) .  It also follows from (5.3) that 

~ ~ d p ~ ~ ~ ( p + p ’ ) g , ( O ; p , p ’ ; t ) d p ’  = constant in time 

As we have seen in the argument which led to (4.4)) a/t is equivalent to the rate 
of collision per unit time. 
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= 2a, say. ( 5 . 5 )  

On substitution from (5 .5 ) ,  equation (4.5) is reduced to 

dN(t ) /d t  = - (a/t)  N ( t ) ,  (5.6) 

N ( t )  = No(t,/t)a, (5.7) 
whose solution is given by 

where No stands for N(to)  a t  an initial time to. 
Integrating (4.6) multiplied by p with respect to p gives 

dZ(t)/dt = (a/t)  Z(t), (5.8) 

which has the solution = l o ( t / t o ) a ,  (5.9) 
where 1, = Z(t,). Obviously (5.7) and (5.9) satisfy the consistency condition 

N(t)Z(t) = NOZO = L, (5.10) 

showing that the number of particles N decreases monotonically in time while 
the mean interval Z increases monotonically keeping N ( t )  Z(t) invariant. 

So far we have introduced no assumption except for restricting ourselves to 
the self-preserving solutions, but in order to proceed further we have to intro- 
duce some assumption concerning the joint distribution g,(h; p, p’; t )  since (4.10) 
governs g, only in the mean. First we assume that the distributions of the 
masses p and p‘ are independent of each other. Then g1 may be expressed as 

Sl(kP,p’;t) =f(pC,t)f(llC‘,t)h1(hJp,pG‘;t), (5.11) 

where h,(h]p,p‘;  t )  represents the coiiditional probability density of h for a given 
pair of p and p’. Next we shall assume that the turbulent velocity fields have 
a statistically similar structure so that the conditional distribution of h for 
given p and p‘ depends only upon ratios Alp and Alp‘. Since h changes in time 
according to  (3.6) the above assumption requires that h, be a function of h/(,u +p’) 

(5.12) 

d h ,  (5.13) 

alone. Thus, we let 2a 

It follows from the definition that 

and from (5.5) and (5.11), 

so that, in view of (4.1), h(0) = 1. (5.14) 
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On substitution from (5.11), (5.12) and (5.14), equation (4.6) becomes an 
equation for f (p, t )  : 

(5.15) 

Under the restriction to a similar solution of the type (5.1), equation (5.15) is 
reduced to 

(5.16) 

where x = p/Z(t). 
Equation (5.16) is solved by introducing the Laplace transform off@), 

r m  
F ( p )  = f ( x )  e--pzdx. 

J O  

Then the following equation for P(p)  is deduced from (5.16): 

d[PF(P)lldP = 

whose general solution is given by 

F(P)  = 1 / P +  QP), 
where C is an integration constant. Since, from (5.4) and (5.1), 

(5.19) becomes = 1/(1+P). 

The inverse Laplace transformation of (5.21) gives 

f ( z )  = e-z. 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

Then on substituting (5.22) into (5.1) we obtain the following distribution for 
the mass p: 

f (P ,  t )  = - exp - - (5.23) 

The solution (5.23) does not involve the collision rate and represents the ex- 
ponential distribution, which is equivalent to the limiting distribution of the 
intervals between the nearest neighbours of N particles distributed uniformly 
and independently of each other on a line of the length L as L -+ co, N --f co, with 

Next we shall obtain g(h, t )  by solving (4.10), which is reduced on substitution 

l ( t )  [ &I* 

L / N =  1. 

from (5.23) to 
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Through a transformation of variables (5.24) becomes 
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(1 - 2a) h(2) + ((1 -a) x - i) 

In order that this equation is satisfied for an arbitrary h the integrand must 
vanish identically: 

(1-  2a)h(z)+{(l-a)z-$}dh(2)/dz  = 0. (5.25) 

The solution of (5.25) which satisfies the condition (5.14) is readily expressed 
as follows. 

W h e n O < a < l ,  

{l- 2( 1 -a) ~ } ( ~ a - l ) / ( l - e )  for z < 1/2( 1 -a), 
for x > 1 /2 ( l -  a). 

h(z) = 

When a = 1, 
(5.27) 

(5.28) 

Using (5.11), (5.12) and (5.23) the joint distribution gl(h;p,p‘; t )  is expressed 
in terms of the function h(z)  as follows: 

Then substitution of (5.29) into (4.3) leads to the distribution g(h,t)  

(5.29) 

(5.30) 

Unlike the distribution (5.23) forf(p, t ) ,  the distribution (5.30) changes with the 
collision rate a .  The distribution curves for various a are calculated by sub- 
stituting (5.26)-(5.28) into (5.30) and are shown graphically in figure 3. 

Now we shall determine the value of a. It is easily proved by integrating (2.1) 
that the integral scale of the turbulent velocity field defined by 

J =_- /om(u(x, t )  u(x+ r ,  t ) )  dr (5.31) 

is invariant in time (see Burgers 1950, p. 249; Saffman 1968, p. 542): 

dJ /d t  = 0. (5.32) 

On the other hand, the dimensional analysis and the assumption of self- 
preservation made in this section lead to the relation 

J cc Z(t)3t--2 cc t3a-2, (5.33) 

where use has been made of (5.9). Thus, in order that (5.32) and (5.33) be com- 
patible we must have a = 5. In  this case (5.30) becomes 

(5.34) 

where 
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The above argument, however, does not apply to the case of J = 0. If the 
turbulent velocity field u(x, t )  is taken as a stationary random process in which 
~ ( x ,  t )  and u(x', t )  for x + x' are independent of each other, the non-zero value 
of J is an unavoidable consequence. However, in real turbulence, where the 
values of u(z, t )  for different x's are related to each other, the vanishing value of J 
is quite possible and in fact a limiting process leads to .I = 0. In  this case a is 
not determined by the dimensional analysis and we have to introduce a new 
principle for this purpose. 

a=O 

0.3 
/ 0.5 

I I I I 1 
0 1 2 3 

h/W 

FIGURE 3. Distributions of the intervals. 

Let us define the entropy of the distribution g(h, t )  by 

(5.35) 

The entropy S differs for different distributions of g(h, t ) ,  and at  any time the 
distribution which is realized in nature would be the one associated with the 
maximum entropy. Such a distribution is easily found by making use of 
Lagrange's method of undetermined multipliers under the conditions (4.2) and 

(5.36) 

which is the exponential distribution of the same form as (5.23). The distribution 
(5.36) is nothing but a special case of (5.30) for a = 4, and therefore a = 4 may 
be said to correspond to the state of maximum randomness which would be 
realized if no subsidiary condition were imposed. This may also be confirmed by 
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figure 4, which shows that the value of S calculated numerically for the dis- 
tributions (5.30) actually takes a maximum at a = Q. 

It should be noted that the exponential distribution (5.36) possesses the 
maximum entropy among not only the distributions of the type of (5.30) but 
all possible distributions. Thus we shall take the collision rate a = 3 and the 
exponential distribution (5.36) for g(h, t )  as corresponding to the state which is 
most likely to occur in the real process of turbulence. 
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FIGURE 4. Entropy of the distribution of the interval. 

6. Decay of turbulent energy 

of decay of turbulent energy per unit length defined by 
Now, having obtained the distribution function f(p, t ) ,  we can derive the law 

1 
g(t) = L-XS lim / r u ( x ,  t)zdx. (6.1) 

The equation for &(t) is derived by integrating (2.1) multiplied by u(x,t)  and 
taking into account the periodicity condition (3.1) : 

- lim - - u(x,  t)Zdx 

= -1im L+CO %J0 (&) dx. 
*- at L+oo - 2L at VOL 

. I L a u 2  

Investigation of the asymptotic expression (2.12) for u(x, t )  for 1 < t ,  1 4 R 
shows that the dominant contribution to Bulax comes from the shock fronts, 
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contributions from other regions being of minor order, O( l /R),  where R = uol,/v 
and uo = &/to. Thus, 

where E is a small but finite positive number. Substitution of the expression (6.3) 
into the right-hand side of (6.2) leads to 

1 m  N 
- - 1 ~ o s h - ~  s ds C ,uz 

i= l  16Tt - -co 

In  the limit of L + 00, N -+ 00, the law of large numbers guarantees the equi- 
valency of the arithmetic mean to the probability mean, and hence for 1 < t < R,  

where use has been made of the distribution (5 .23) .  

d&(t) l ( t ) 2  

at 2 t 3  

Thus, (6.2) becomes 
-=-- 

I" 

where (5.9) has been taken into account. Integration of (6.4) immediately gives 
the following law of energy decay: 

In  order that this result be physically meaningful (8 > 0) the value of a must 
be in the range 0 < a < 1. 

It has been shown in § 5 that a = 8 is a unique value for the case of J + 0,  and 
cr. = 4 corresponds to the decay process most likely to occur in the case of J = 0. 
For a = 3 ,  (6.5) becomes 

(6.6) 31; -3, €( t )  = - t 
4t; 

and for a = 4, 
2 

&(t) = nt-1, 
2t; 

(6.71 

which gives an inverse power law of energy decay. A numerical calculation of 
the energy of Burgers turbulence was carried out by Crow & Canavan (1970) 
for various values of the Reynolds number and the limiting law of energy decay 
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FIGURE 5. Decay of turbulent energy. 

for infinite Reynolds number was derived through extrapolation. The curve of 
energy decay thus obtained is depicted in figure 5 together with the inverse 
power law due to (6.7). The agreement of the law (6.7) with the numerical curve 
is striking in the range of time 1 < t/T < 3, where T = i/(ko(u2)$), (G), and k, 
being the initial energy and the wavenumber at  which the initial spectrum has 
the maximum respectively. This agreement seems to provide an actual basis 
for the choice a = &. The discrepancy of the curves before this time range, 
t/T < 1, should be attributed to  the fact that triangular shock waves have not 
yet been fully developed in the numerical experiment, whereas the deviation 
after this period, t/T > 3, is due to the fact that the condition 1 < t < R is no 
longer fulfilled in the numerical calculation. 

Lastly it should be noted that in the present approach the turbulent energy 
has been derived directly from the distribution of the lowest order without resort 
to any other statistical averages. This situation is essentially different from that 
in the conventional theories of turbulence dealing with the mean velocity products 
or their Fourier transforms, where the energy had to be derived as the limit of 
the velocity correlation (u(z, t )  u(z -t r,  t ) )  as r + 0 or equivalently as an integral 
of the energy spectrum. However, this by no means implies that the velocity 
correlation, the energy spectrum and other statistical averages are of no interest 
in the present approach. Indeed a theory of turbulence will not be satisfactory 
without information of these statistical quantities. To work out these quantities 
requires solving the equations of the joint distributions of higher order, gn (n 2 2), 
and this will be dealt with in a separate paper. 
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